skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "LaMaster, Daniel J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of 1,3,5,7-tetraphenyl-aza-BODIPY dyes functionalized with electron-donating or withdrawing groups at the para-positions of the phenyl rings on either the 1,7- or 3,5-positions were synthesized and characterized. The electron-donating group selected was –NH2, while the electron-withdrawing groups spanned a range of strengths, from strong (-NO2) to moderate (-NH3+) and mild (-Ndouble bondCdouble bondS). The structural modifications were strategically implemented to investigate their impact on the dyes photophysical properties. Spectroscopic studies revealed that these dyes exhibit intense absorption and emission in the near-infrared (NIR) region (678–855 nm). The photophysical properties, including molar absorptivity, fluorescence quantum yield, and Stokes shift were found to depend significantly on both the electronic nature (donating/withdrawing) and positioning (1,7- vs. 3,5-) of the substituents. Complementary computational studies provided insights into the electronic structures and excited-state dynamics, corroborating experimental observations. Time-dependent density functional theory (TD-DFT) calculations revealed that the electron density distribution and the frontier orbitals’ energies and shapes were significantly influenced by the electronic effects of the substituent groups. This study underscores the tunability of aza-BODIPY dyes through rational molecular design, enabling precise control over their optical properties for tailored NIR applications. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  2. The introduction of electron-withdrawing groups on 8(meso)-pyridyl-BODIPYs tends to increase the fluorescence quantum yields of this type of compound due to the decrease in electronic charge density on the BODIPY core. A new series of 8(meso)-pyridyl-BODIPYs bearing a 2-, 3-, or 4-pyridyl group was synthesized and functionalized with nitro and chlorine groups at the 2,6-positions. The 2,6-methoxycarbonyl-8-pyridyl-BODIPYs analogs were also synthesized by condensation of 2,4-dimethyl-3-methoxycarbonyl-pyrrole with 2-, 3-, or 4-formylpyridine followed by oxidation and boron complexation. The structures and spectroscopic properties of the new series of 8(meso)-pyridyl-BODIPYs were investigated both experimentally and computationally. The BODIPYs bearing 2,6-methoxycarbonyl groups showed enhanced relative fluorescence quantum yields in polar organic solvents due to their electron-withdrawing effect. However, the introduction of a single nitro group significantly quenched the fluorescence of the BODIPYs and caused hypsochromic shifts in the absorption and emission bands. The introduction of a chloro substituent partially restored the fluorescence of the mono-nitro-BODIPYs and induced significant bathochromic shifts. 
    more » « less
  3. Boron dipyrromethene (BODIPY) dyes bearing a pyridyl moiety have been used as metal ion sensors, pH sensors, fluorescence probes, and as sensitizers for phototherapy. A comparative study of the properties of the three structural isomers of meso-pyridyl-BODIPYs, their 2,6-dichloro derivatives, and their corresponding methylated cationic pyridinium-BODIPYs was conducted using spectroscopic and electrochemical methods, X-ray analyses, and TD-DFT calculations. Among the neutral derivatives, the 3Py and 4Py isomers showed the highest relative fluorescence quantum yields in organic solvents, which were further enhanced 2-4-fold via the introduction of two chlorines at the 2,6-positions. Among the cationic derivatives, the 2catPy showed the highest relative fluorescence quantum yield in organic solvents, which was further enhanced by the use of a bulky counter anion (PF6−). In water, the quantum yields were greatly reduced for all three isomers but were shown to be enhanced upon introduction of 2,6-dichloro groups. Our results indicate that 2,6-dichloro-meso-(2- and 3-pyridinium)-BODIPYs are the most promising for sensing applications. Furthermore, all pyridinium BODIPYs are highly water-soluble and display low cytotoxicity towards human HEp2 cells. 
    more » « less